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Synopsis 

A mathematical model of a tubular fiber is analyzed to predict its rigidity and some of its physical 
properties which are essential in textiles. The change in the properties of a tubular fiber with increase 
in the size of hollow core is considered and compared with the cylindrical fiber of the same outside 
diameter, the same denier, and the same rigidity as that of the tubular fiber. The equations are 
developed in dimensionless quantities to make them invariant to the units of fiber dimensions. The 
analysis revealed that having a hollow core of 4/1Oth the size of the outside diameter, in a solid fiber, 
could reduce the fiber weight by 16% without making any significant change in the rigidity of the 
fiber. 

INTRODUCTION 

About 70% of the total fibers used are man-made which can be engineered to 
satisfy a specific end use.' Most of the man-made fibers are produced from 
synthesis of petrochemicals such as polyester, nylon, acrylic, polypropylene, etc. 
About 2 X lo8 lb of these fibers, called fiberfill, are used annually for stuffing 
in textile products, such as pillows, mattresses, sleeping bags, e tc2 A large 
proportion of fibers is also used for packings and insulation. If the fibers used 
as fiberfill are tubular, then the same job of filling can be achieved by less fiber 
weight, which would not only reduce the weight of product and enhance its 
thermal insulation property, if desired, but would also save petroleum, which 
is an important source of energy. 

A t  present, different deniers of synthetic fibers are produced for fiberfill. Six 
denier fibers are used as filling fibers in pillows, 15 denier fibers in furniture, and 
40 denier for filtration purposes.2 These fibers are 2-2.5 in. in staple length and 
made of polyester materials. In some cases the central core is made hollow which 
is approximately 15% of the total cross-sectional area of the fiber. The use of 
such fibers gives a 10-12% saving of the material. The fibers are crimped by 
stuffer-box technique to give them more bulk. Some fibers have their surface 
modified to give low stiffness properties to the product. 

Use of tubular fiber in place of cylindrical fiber would affect the physical and 
mechanical properties of a p r ~ d u c t . ~ - ~  Tubular fiber has higher bulk, crimp, 
covering power, thermal insulation, and absorbing capacity in comparison to 
cylindrical fiber.3 Short tubular fibers will have more crimp because of the 
difference in stresses on the inner and outer walls of the fiber tube during ex- 
trusion. The use of tubular fibers in sleeping bags showed better thermal in- 
sulation as compared to the use of cylindrical fibers? This increase in insulation 
was due to the amount of dead-air trapped in the tubular fibers. Study on the 
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use of tubular fibers in nonwovens showed that tubular fibers have good covering 
power because of more surface area per unit volume of the fiber.5 Further study 
on the collapsibility of the fiber showed that it is dependent upon the ratio of 
the hollow to solid area, the elastic modulus of the material, and dimensions of 
the annular ring of tubular fibers. Using Timoshenko’s theory of elastic stability, 
the critical pressure required to collapse a tubular fiber is defined as in Ref. 5: 

(1) 
where E is the elastic modulus, t is the wall thickness of fiber tube, Cli is the inner 
diameter of fiber tube, and do is the outside diameter of fiber tube. 

The objective of this study was to analyze the effect of the size of hollow core 
on various properties of the fiber such as change in rigidity, weight, volume, etc. 
Three cases of a tubular fiber are analyzed and compared.with one another for 
their various properties. The three cases of the tubular fibers are: fibers having 
constant outer diameter, constant denier (linear density), and constant rigidity. 
A definite relationship has been discovered to produce tubular fibers of different 
dimensions but having the same rigidity or stiffness property. 

cc = 2 ~ [ 2 t / ( 4  + 4 ) 1 3  

THEORY 

Assumptions: The following assumptions are made to analyze the mathe- 
matical model of tubular fiber: (1) fibers are circular in cross section; (2) hollow 
core in tubular fiber is circular; (3) fibers are made of isotropic material; (4) fibers 
are subjected to small deformation; (5) fibers are subjected to either pure bending 
or pure twisting. 

Nomenclature: The symbols used to analyze the mechanical and physical 
properties of a tubular fiber with respect to a cylindrical fiber are given in the 
Appendix. 

Diameter of a Cylindrical Fiber: Consider a circular cylindrical fiber of 
diameter D(mm), and let p be the density of fiber material (g/cc); then the mass 
of 1 cm long fiber can be written as 

w = (p7rD2/400) g (2) 
If nd  is the linear density of the fiber [denier, i.e., (g) of 9000-m-long fiber], then 
eq. (2) can be written as 

n d  = ( p ~ D ~ / 4 0 0 )  X 9 X lo6 (3) 
Simplifying and rearranging the terms in eq. (3) for the diameter D of the fiber 
gives 

D = 0 . 0 1 1 9 m  (4) 

If the linear density of the fiber is given in tex, nt, which is the weight (g) of 
1000-m-long fiber, then eq. (4) can be modified to 

D = 0.0357- (5) 
Most of the textile fibers have material densities in the range of 0.9-2.7 g/cc.6 
The plot between the diameter of a circular cylindrical fiber and its denier value 
for different densities of polymeric material is shown in Figure 1. It shows a 
parabolic relation between the two parameters. As obvious from Figure 1, fibers 
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Fig. 1. Diameter of cylindrical fiber vs. denier of fiber for different densities of polymeric material. 
p = density of fiber (g/cc). 

made of denser material will acquire smaller diameter for the same denier value. 
It further shows that decrease in fiber diameter is not linearly proportional to 
the increase in density of the material. 

Tubular Fibers: Three cases of a tubular fiber are analyzed to predict five 
different properties of the fiber. These three cases of a tubular fiber are shown 
in Figure 2. All the five properties are predicted in terms of the ratio of diameter 
of the hollow core of tubular fiber to the diameter of its counterpart circular 
cylindrical fiber. 

The effect of the size of hollow core on five different properties of the tubular 
fiber are: (1) outside diameter of tubular fiber; (2) wall thickness of tubular fiber; 
(3) change in weighthit length of fiber; (4) change in volume/unit length of fiber; 
(5) change in rigidity of fiber. 

Case I. Constant Outside Diameter 

The outside diameters of a cylindrical fiber and of the tubular fiber are as- 
sumed to be same. If D is the diameter of cylindrical fiber, then the outside 
diameter, do, and wall thickness t of the tubular fiber can be written as 

do/D = 1.0 (6) 
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Case I :  Cylindrical fiber and tubular fiber have same outside diameter. 

Case 111: Cylindrical 
r igidit ies .  

fiber and tubular fiber have same bending and torsional 

Case 1 1 :  Cylindrical fiber and tubular fiber have same denier; i . e .  same 

Fig. 2. Three cases of a tubular fiber as compared to cylindrical fiber. 

area of cross-section. 

where di is the inner diameter of tubular fiber. The above equation is written 
in dimensionless quantities to eliminate the effect of units in the desired rela- 
tions. 

Percent change in weighthnit length of the tubular fiber with respect to the 
cylindrical fiber can be calculated by the change in the material area of cross 
section of the fiber, i.e., 

x 100 
( ~ d y 4  - ~ d T / 4 )  - rD2/4  

rD2/4  
%AW = 

Substituting eq. (6 )  in eq. (8) and simplifying gives 

%AW = -100(dj/D)2 (9) 
The negative sign in eq. (8) indicates the reduction in weight of tubular fiber with 
increase in the size of hollow core. 

As the tubular and cylindrical fibers have the same outside diameter, the 
volume/unit length of the tubular fiber will remain the same as that of cylindrical 
fiber, i.e., 

%AV = 0 (10) 

Bending and torsional rigidities of a rod are defined by EI and GJ, respec- 
t i ~ e l y . ~  As the materials of tubular and cylindrical fiber are assumed to be same, 
the change of rigidities will be proportional to the change in moment of inertia 
of the cross section of fibers. For circular cross section, the values of I and J are 
defined as: for cylindrical fiber, 

I = rD4/64 ( 1 1 )  
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J = rD4/32 (12) 

(13) 

(14) 
It is obvious from eqs. (11)-( 14) that the polar moment of inertia of a circular 

cross section is twice its rectangular moment of inertia, so the percent change 
in bending rigidity of a tubular fiber with respect to the cylindrical fiber will be 
same as percent change in torsional rigidity of the fiber. The change in fiber 
rigidity due to hollow core can be calculated as 

for tubular fiber, 

I = r ( d :  - d4)/64 

J = r ( d :  - df ) /32  

Substituting the value of do from eq. (6 )  and rearranging the terms gives 

%AR = - 1 0 0 ( 4 / ~ ) 4  (16) 

Case 11. Constant Denier 

The denier (or weighthnit length) of a tubular fiber is assumed to be same 
as that of cylindrical fiber. As both the fibers are made of same material, the 
area of cross section of both the fibers should be same, i.e., 

(17) '/4rD2 = '/4r(df - d;)  

Outside diameter of the tubular fiber with respect to diameter of cylindrical 

(19) 

(20) 

(21) 

As the tubular and cylindrical fibers are of same denier, the weighthit length 

fiber can be obtained by rearranging the terms in eq. (18), i.e., 

do/D = J l  + (di/D)2 

t = '/2(do - dj) 

t /D  = '/2[J1 + (dj/D)2- di/D] 

Wall thickness of the tubular fiber can be obtained from 

Dividing both sides by D and substituting eq. (19) yields 

of both the fibers will be same, i.e., 

%AW = 0 (22) 
The percent increase in volume of tubular fiber due to hollow core will be 

Substituting the value of do from eq. (18) and simplifying gives 

%AV = 100(di/D)2 (24) 
Change in rigidity of fiber due to hollow core is defined by eq. (15), which can 

be written as 
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TABLE I 
Mathematical Expressions to Determine Different Properties of a Tubular Fiber with Change in 

the Size of Hollow Core. in Three Different Cases of Tubular Fiber 

Case I: Case 11: 
constant constant 

Property outer diameter denier 

Case 111: 
constant 
rigidity 

d,/D 1.0 41 + (di/D)' $1 + (di/D)4 
t /D - di/D) ' /2 [d l  + (di/D)2 - di/D] ' /2[81 t (di/D)4 - di/D] 

%AV 0 100(di/D)' lOO[dl + (di/D)4 - 11 
%A W -100(di/D)2 0 l O O [ d l +  (di/D)4 - (di/D)' - 11 

%AR -100(4/~)4 200(di/D)2 0 

or 
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Fig. 3. Change in outside diameter of hollow fiber with increase in size of hollow core: (-) 
constant outside diameter; (- - -1 constant denier; (. . . .) constant rigidity. D = diameter of cylindrical 
fiber, di = inside diameter of hollow core, do = outside diameter of tubular fiber. 
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Fig. 4. Change in wall thickness of tubular fiber with increase in size of hollow core: (-) constant 
outside diameter, (- - -) constant denier; (. . . .) constant rigidity. D = diameter of cylindrical fiber, 
di = inside diameter of hollow core, and t = wall thickness of tubular fiber. 

Using eq. (18), the above equation can be reduced to 

%AR = 200(di/D)2 

Case 111. Constant Rigidity 

The bending and torsional rigidity of a tubular fiber are assumed to be same 
as that of cylindrical fiber. It implies that both the fibers have same moment 
of inertia, i.e., 

% A R = O  (28) 

and 

xD4/64 = r ( d t  - dp)/64 

or 
0 4  = d: - dp 

i.e., 

d,/D = $1 + (di/D)4 
The wall thickness of tubular fiber can be found by substituting the value of 

do from eq. (31) into eq. (20). It gives 
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Fig. 5. Percent reduction in fiber weight with increase in size of hollow core: (-) constant outside 
diameter; ( - -  -) constant denier; (. . . .) constant rigidity. D = diameter of cylindrical fiber, and di 
= inside diameter of hollow core. 

t / ~  = 1/2[4'1+ (di/0)4 - d i / ~ ]  (32) 
Change in weighthnit length and volume/unit length of tubular fiber can be 

found by using eqs. (8) and (23), respectively, and eliminating the term do in them 
by using eq. (31). This gives 

(33) %AW = IOO[dI + (di/D)4 - (di/D)2 - 11 

DISCUSSION 

The equations developed to predict the five properties, for three different cases 
of a tubular fiber, are summarized in Table I and plotted in Figures 3-7. 

As shown in Table I, all the equations derived are in dimensionless quantities, 
and each property is defined in terms of the ratio of the inner diameter of tubular 
fiber to the diameter of its corresponding cylindrical fiber. It further shows that 
for the case of constant outside diameter of tubular fiber, increase in the size of 
hollow core reduces the fiber weight by only the second order of the diameter 
of the inner hole while it reduces the fiber rigidity by the fourth order of the di- 
ameter of the inner hole. In the case of constant denier tubular fiber, the fiber 
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Fig. 6. Percent increase in fiber volume with increase in size of hollow core: (-) constant outside 
diameter; ( - - - )  constant denier; (. . . .) constant rigidity. D = diameter of cylindrical fiber and di 
= inside diameter of hollow core. 

volume increases by the second order of the size of the inner hole and percent 
increase in fiber rigidity is twice the percent increase in fiber volume. 

Figure 3 compares the three cases of tubular fiber for its outer diameter. It 
shows that the outside diameter of tubular fiber of constant denier increases more 
rapidly with increase in the size of the hollow core as compared to the outside 
diameter of tubular fiber of same rigidity. 

Figure 4 shows that the increase in the size of the hollow core will linearly de- 
crease the wall thickness of tubular fiber of constant outside diameter. The cases 
of constant rigidity and constant denier show concave upward relations for the 
wall thickness of tubular fiber. It further shows that, up to 40% of the size of 
the inner hole as compared to the outside diameter of tubular fiber, the wall 
thickness of constant rigidity and constant outside diameter tubular fibers re- 
mains almost same and further increase in size of the inner hole will cause thicker 
wall for constant rigidity tubular fiber. 

Change in weighthnit length of tubular fiber with change in the size of hollow 
core is shown in Figure 5. It  shows more reduction in fiber weight of constant 
outside diameter tubular fiber as compared to the case of constant rigidity tu- 
bular fiber for larger sizes of hollow core, but, up to 40% of the size of inner hole, 
both the fibers have almost the same reduction in fiber weight. 
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Fig. 7. Percent change in fiber rigidity with increase in size of hollow core: (-) constant outside 
diameter; ( - -  -) constant denier; (. . . .) constant rigidity. D = diameter of cylindrical fiber and di 
= inside diameter of hollow core. 

Figure 6 shows the plot for increase in fiber volume with increase in the size 
of hollow core. Constant denier tubular fiber shows more rapid increase in fiber 
volume as compared to constant rigidity tubular fiber for the same size of hollow 
core. 

Figure 7 shows that constant denier tubular fiber will have increase in fiber 
rigidity while constant outer diameter tubular fiber will lose its rigidity with 
increase in the size of hollow core. Rigidity is the measure of flexibility, and so 
is hand of the fiber. Change in fiber rigidity will affect the compressibility and 
so the comfort properties of the product. If the aim of producing tubular fiber 
is to reduce fiber weight and increase fiber volume without affecting the fiber 
stiffness property, then the proper dimensions of the tubular fiber must be chosen 
from the constant rigidity case. If the purpose is only to reduce fiber weight or 
only to increase fiber volume, then the case of constant outside diameter tubular 
fiber or the case of constant denier tubular fiber should be considered, respec- 
tively. Of course, it would affect the fiber rigidity property. 

Comparing Figures 3-7, it can be observed that, up to 40% of the size of the 
hollow core, compared to the outer diameter of the fiber, there is no significant 
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difference in the property of constant rigidity and constant outer diameter tu- 
bular fibers. Figure 5 shows that by having a hollow core of 0.4 the size of outer 
dimension of a fiber, can save up to 16% in material weight. It further shows that 
a fiber having a hollow core of 0.5 its outer diameter has only 6% reduction in fiber 
rigidity, for the case of constant outside diameter tubular fiber, but it can save 
as much as 25% in material weight. This 6% loss in fiber rigidity can be totally 
recovered by increasing the outer dimension of fiber by 1.5% and sacrificing 
saving in material weight by only 3%. 

The theory developed here can be verified by taking the microphotograph of 
a hollow fiber cross section for its dimensions and measuring the bending and 
torsional rigidity of the fiber by utilizing the principle of transverse and torsional 
vibrations, respectively. A vibroscope, which is generally used to measure the 
linear density of a fine fiber, works on the principle of transverse vibration. This 
instrument can be modified to measure the bending rigidity of a hollow fiber. 
Torsional rigidity of a hollow fiber can be obtained by making a torsional pen- 
dulum of the fiber sample and checking its natural frequency of torsional vi- 
bration. 

CONCLUSIONS 

The theory developed here could be used for determining the dimension of 
a tubular fiber to comply with specific end use of the product, in terms of its 
weight and stiffness property. Even though the edge effect of a hollow fiber, 
when it is extruded, is not considered in the analysis, it can be assumed that the 
difference in the edge effect of the two hollow fibers of comparable dimensions, 
on the rigidity and other properties of the fibers, is negligible. Furthermore, 
the model analyzed here is for a single fiber, but it is believed that it can be used 
to compare the relative behavior of different tubular fibers in bundle form, where 
interfiber friction plays an important role. 
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APPENDIX: NOMENCLATURE 
diameter of a cylindrical fiber (mm) 
outside diameter of tubular fiber 
inside diameter of tubular fiber 
denier of fiber 
tex of fiber 
rectangular moment of inertia of fiber cross section 
polar moment of inertia of fiber cross section 
elastic modulus of fiber material 
shear modulus of fiber material 
wall thickness of tubular fiber 
weight of 1 cm long fiber 
percent change in fiber weight 
percent change in fiber volume 
percent change in fiber rigidity 
density of fiber material (g/cc) 
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